MISSION STATEMENT

The Asian Fund for Cancer Research Limited (AFCR) is committed to fund cancer research, especially those cancers prevalent in Asian populations, and promote global collaborations for high impact to save the lives of cancer patients.

TABLE OF CONTENTS

- Our Unique Approach...1
- New Models of Early Cancer Development.................................2
- Improving Diagnosis of Esophageal Cancer.................................3
- Ending Drug Resistance...4
- Determining the Risk of HBOC in China.......................................5
- Epithelial Cell Polarity Proteins..6
- Innovative Liver Cancer Treatment Initiative...............................7
- GBM AGILE to Defeat Brain Cancer..8
- Recognizing Excellence in Cancer Research...............................9
- Bringing International Partners Together.....................................10
- Hong Kong Cancer Day...11
- Public Education on Cancer...12-13
Advancing Cutting-Edge Cancer Research

We believe that research holds the key to curing cancer. That’s why at AFCR, we place the highest priority on advancing leading-edge cancer research that can lead to better preventative methods, advanced diagnostic tools, more effective treatment approaches and, ultimately, cures for all cancers.

Building an International Network

We work with an international network of leading cancer scientists, cancer research hospitals and institutions and biopharmaceutical companies. As a result, AFCR is uniquely positioned to gather top research minds across the globe to investigate the distinct causes of cancer in Asian populations and to help implement in the region the newest disease research discoveries and technologies available.

Creating Collaborative Platforms

AFCR is working to establish a number of collaborative platforms for our and other leading researchers and institutions. By fostering frequent interactions throughout Asia, resources can be most effectively leveraged and discoveries can be more quickly translated into new clinical practices that benefit cancer patients.

Promoting Public Awareness of Cancer

AFCR provides the public with a wide variety of in-depth, up-to-date cancer prevention information and healthy lifestyle tips. We help the community understand the latest scientific achievements and their potential significance to improve the prevention, diagnosis and treatment of cancer. Armed with this knowledge, people can better protect themselves against the disease.

Enclosed are research projects currently sponsored by AFCR. Each of these and their achievements are made possible only through our dedicated donors’ support.
New Knowledge in Understanding the Earliest Stages of Cancer Growth

Development of appropriate models for cancer is critical for understanding the disease mechanisms. While studies in complex animal models and cell lines provide important insights, these commonly do not translate into clinical success. Cancer therapies effective in animal models often fall short when used to treat patients.

Models of cancer development and progression continue to be refined, a process which can lead to more effective diagnostic, preventive and treatment tools. Despite progress, still lacking is a full understanding of the earliest stages of cancer growth and how tumorous cells respond to different signaling cues.

Stem Cell Models of Cancer Growth

Dr. Nancy Ip, of The Hong Kong University of Science and Technology, is a widely respected expert in both the cancer and Alzheimer’s disease fields. With continuing support from AFCR, her team is developing a new model of early cancer development from a particular type of stem cell: induced pluripotent stem cells (iPSCs). Their critical research may provide new insights which impact cancer prevention and help identify biomarkers for early detection and targets for precision medicine.

iPSCs, available from standard tissue banks or generated in the laboratory, have two essential properties: (1) iPSCs grow and renew indefinitely in laboratory dishes or cultures; and (2) iPSCs retain the capacity to differentiate into specific cell types (the feature known as pluripotency).

Using a standard cell line of B lymphocytes or human white blood cells, Dr. Ip’s team employs advanced molecular biology techniques to first reprogram the cells into becoming iPSCs. Growing the iPSCs in specific differentiation media directs the cells to become different precursors of cancer cells and cell types of the body—or pluripotent.

Role of Amyloid Precursor Protein Role in Cancer Growth

Using iPSCs, Dr. Ip’s team is focusing on the role of amyloid precursor protein (APP) in early stages of cancer. APP is abnormally expressed in pancreatic, colon, breast, prostate, lung and other cancers, and recent reports show it correlates significantly with increased cancer cell proliferation and the migration and invasion of cancer cells into healthy tissue.

Using the cutting-edge genome editing technology, CRISPR, Dr. Ip’s team is generating isogenic iPSC lines containing different doses of APP. By regulating the abnormal expression of APP in these cell lines, the scientists can identify and study the functions of APP in cancer development. The researchers are establishing two and three-dimensional cultures from the iPSCs for disease mechanism studies.

Prevention, Biomarkers and Precision Oncology

This new model has significant potential to bring a greater understanding of how cancer first develops and can lead to prevention approaches, new biomarkers to detect early-stage cancer, and the contribution of gene candidates to cancer and in precision medicine. Moreover, iPSCs, subsequently engineered, hold promise as a treatment paradigm, adding to the growing number of means by which individual cancer therapies are developed.
Esophageal squamous cell carcinoma (ESCC) is an all-too-common disease in Asia, where it ranks fifth in cancer incidence and fourth in cancer mortality in China. In Japan, ESCC is the tenth most common malignancy and the seventh most common cause of cancer-related deaths. Early detection, diagnosis and treatment of ESCC is of critically high importance in saving patients’ lives.

Pre-surgical determination of staging of early ESCC via an endoscopy ultrasound (EUS) exam is commonly used to guide in the assessment of treatment options. Stage T1a—cancer detected in the upper or mucosa layer of cells—requires a simple surgical resection. Stage T1b—cancer evident in the deeper, submucosa layer of cells—can involve invasive surgical removal of the esophagus and lymph nodes.

Limited Resolution of Pre-Surgical Exam

Due largely to the esophagus’s thick walls, EUS procedures can yield limited resolution findings. This is a major cause of inaccurate staging by doctors, with endoscopists tending to over-report T1a as T1b when they are not certain. As a result, T1a stage patients, imprecisely determined to be at the T1b stage, may incur unnecessary esophagostomy—a tragic consequence to overly conservative medical diagnoses.

To improve the accuracy and effectiveness of the EUS exam for early stage ESCC in the Chinese population, and to reduce unnecessarily severe invasive treatments for patients, AFCR is supporting a clinical study led by the highly-experienced physician-scientist Dr. Jian-Jun Li, at the Sun Yat-sen University Cancer Center in Guangzhou, China.

Dr. Li and his team have shown that a saline injection into the submucosal layer of a patient’s esophagus during the pre-surgical EUS exam improves the resolution needed for more accurate sub-staging of early ESCC. No significant damage to human tissue is caused by this technique. And in a small study of 15 patients with early ESCC, this approach resulted in an accuracy of diagnosis as high as 85%—a significant improvement over the norm.

Ongoing Clinical Study is Testing Effectiveness of New EUS Procedure

Dr. Li and his team are conducting a clinical study to evaluate if such procedures are, indeed, as effective as initial results have shown. A large clinical study of 200 early stage ESCC patients is ongoing, with patients divided into three treatment groups: EUS with saline injection, and two control groups—EUS without saline and or EUS with so-called narrow band imaging (NBI) system imaging enhancement. The EUS diagnosis of this study is subsequently being compared to the diagnosis from follow-on pathology results.

Accurate progression diagnoses—stage T1a or stage T1b—are vital to the development of suitable treatment options and accurate prognoses for esophageal cancer patients, while too critically impactful on these persons’ future quality of life. Dr. Li and his colleagues will within two years complete a study that may demonstrate that EUS, combined with saline injection into the submucosal tissue layer, can be an effective, inexpensive and preferred method of diagnosing early stage ESCC. During subsequent months of positive findings, the team will promote the procedure’s effectiveness, allowing more patients in China to benefit from improved staging of early ESCC—and significantly reducing rates of unnecessary invasive surgeries.
New Understanding Needed in Common and Rapid Drug Resistance

The Ras/Raf/MEK/ERK pathway is a cascade of proteins that turn on gene regulators, playing a central role in cell growth, specialization and survival. Tightly and precisely controlled in normal cells, hyper-activation of the pathway caused by DNA mutations are found in more than 40% of human cancers, including melanoma, papillary thyroid tumors, serous ovarian tumors and colorectal tumors. Cells over-proliferate and escape from the normal route of cell death, yielding tumors.

Unfortunately, currently available therapies—Raf and MEK inhibitors—have not been very successful due to common and rapid drug resistance. Patients’ lives are extended usually by only six months. In order to obtain a better understanding of why cancer cells with genetic alterations in the Raf/MEK pathway are resistant to inhibitors, AFCR is supporting the research of an expert, Dr. Jiancheng Hu, of the National Cancer Center Singapore. With a fuller understanding of how the various components in this chain of proteins interact with each other, in both normal and cancerous states, drug targets can be tested and new treatments which disrupt the pathway can be explored.

CRISPR Gene Editing Technology and Computer Modeling

Tumors with mutations activating Ras protein form a super complex of Raf and MEK proteins and other components, reducing affinities of the inhibitors and causing intrinsic drug resistance. Dr. Hu’s team is using the cutting-edge gene editing method, CRISPR, to manipulate this super complex, identify its components and explore effects. Once established, the role of each component in drug resistance will be analyzed in tumor models and cancer cell lines.

Using a structure-based drug design method from computer modeling, Dr. Hu is developing small molecule inhibitors to disrupt the Raf/MEK super complex. The most potent inhibitors are being tested in models derived from cancer patients’ cells which best mimic the human disease. The most promising of these will be further researched for their potential as viable candidates able to counteract the acquired resistance common to patients treated with current generation Raf and MEK inhibitors.

Propelling Development of Next-Generation Inhibitors

Nearly half of all cancers are triggered by hyperactive Ras/Raf/MEK/ERK signaling. Cancer cells with mutations that activate Ras are resistant to the currently available inhibitors, causing patients to experience acquired and intrinsic resistance. The execution of this research by Dr. Hu and his team of researchers—scientists with very strong backgrounds in molecular biology, biochemistry, cell biology and cancer pathology—could propel development of next generation inhibitors which interrupt the resistance mechanisms to current cancer therapies. Approaches that halt this resistance could significantly improve treatment outcomes for many cancer patients whose tumors contain aberrations of this common signaling pathway.
The Need to Improve Care of Hereditary Breast and Ovarian Cancer

Among cancer types for women, breast cancer ranks first in both incidence and mortality rates—globally and too regionally. These figures are expected to continue increasing in the near future among developing countries, including within Asia, where incidence rates are expected to have increased by 18% from 2012 to 2020.

In the West, hereditary mutations in BRCA1 and BRCA2 genes contribute from 5-15% of patients with hereditary breast and ovarian cancer syndrome (HBOC). These gene mutations are known to increase the risk of breast cancer and ovarian cancer by 50-87% and 10-40%, respectively, by the age of 70. In addition, there are other known gene mutations that contribute to a predisposition to HBOC.

It is not known if these values for risk of HBOC in the West are applicable to women in Asia. Without a risk assessment and management tool in place, many BRCA carriers in Asia and their family members will not receive the benefits of genetic screening as part of diagnosis and individualized therapy—increasingly standardized practice in the West. As such, AFCR supports the efforts of esteemed cancer researcher Dr. Ava Kwong, of The University of Hong Kong, to conduct clinical research to assess risks of HBOC in Asia.

Next-Generation Sequencing to Identify Mutations in 26 Genes

Dr. Kwong has already conducted the first and largest cohort of BRCA1 and BRCA2 gene mutation analysis in Hong Kong, wherein she identified 9.4% of the probands (persons serving as the starting point for a family’s genetic inheritance—or “patient zero”) with BRCA mutations.

To assess if the prevalence—and thus risk—of HBOC is similar in Mainland China and Hong Kong as it is in the West, Dr. Kwong’s team will use blood samples from patients in Hong Kong and from Peking University Shenzhen Hospital with a family history of breast or ovarian cancer.

The scientists will use next generation sequencing on the samples to identify mutations in BRCA1 and BRCA2, as well as 24 other genes that have been shown to confer increased risk for cancer. In addition, they will explore if hereditary epigenetics changes are present—these are alternations that would direct a cell to add small molecular additions to a gene that can turn its expression on or off.

Form Testing and Treatment Guidelines for High Risk Patients and Families

Understanding the risk of breast cancer in the Chinese population is very important, especially due to the exponential increase in incidence expected in the next few years. Knowing the hereditary profile for breast and ovarian cancer in China would help in the identification of high risk patients and their family members. Determining the prevalence of mutations in BRCA1 and BRCA2, and other predisposition genes to HBOC, in Mainland China and Hong Kong could help in the formulation of vastly impactful testing and treatment guidelines. Moreover, a future goal of Dr. Kwong’s research program is establishment of the first high-risk breast cancer clinic in China.
Loss of Polarity Proteins Accompanies Cancer

More than 80% of tumors originate in epithelial cells, the most common type of cells in the human body. They are found in a wide array of organs, forming the linings and surfaces of the skin, lung, kidney, liver, stomach, intestine, the reproductive system and more. High incidence and mortality rates of epithelial cell cancers in Asia include lung, liver, and stomach cancers among other types. One thing that all epithelial cells have in common is “polarity,” meaning that one end of the cell has a different size, shape or function than the other side. Polarity is what allows epithelial surfaces to carry out highly specialized functions, like digesting food or filtering blood.

The highly complex transformation of normal epithelial cells into cancer cells, fundamental to this wide variety of cancer-types, is most often accompanied by loss of polarity. AFCR is supporting Dr. Mingjie Zhang, of The Hong Kong University of Science and Technology, a renowned expert in cell polarity, to obtain a fuller understanding of the molecular mechanisms of cell polarity, the feature’s association with cancer, and whether and how maintenance of the former may ward off the latter.

Dr. Zhang’s team uses advanced biochemical, molecular biological and structural imaging technologies to derive high resolution images and other evidence of polarity gene interaction. The data is forming a basis of how proteins and other molecules maintain normal cell function versus their altered role when cancer-causing mutations occur.

Zeroing In on Polarity Protein and Cancer

One focus of Dr. Zhang’s research is to elucidate how proteins in the Hippo pathway, an important cell growth control mechanism, serve as a scaffolding in organizing and building tissue. His research on specific interactions between these proteins’ autonomous “WW domain tandems” and their respective targets is elucidating specific interactions that are critical for cell growth—both normal and cancerous. These efforts too are yielding new insight into interactions and with potential therapeutic implications.

Other related research by Dr. Zhang’s team focuses on how Eph receptors, one of the largest groups of multifaceted cell signaling proteins, mediate cell growth, migration and invasion—and how these properties relate to polarity. Their study into Eph protein’s binding domain, known as SAM, has revealed that many mutations occur within tumor cells. Pinpointing the positions that affect Eph receptor binding could lead to future cancer treatments.

Lastly, Dr. Zhang’s team is also better defining the structure and function of a key scaffold protein family for polarized epithelial cells, called DLG MAGUKs—which are also tumor suppressor genes. Research has yielded better understanding of action mechanisms of this important family of cell polarity regulators.

The deregulation of epithelial cell polarity is a major cause of many types of tumors in humans. In adults, tumor formation and metastasis is invariably associated with the loss of cell polarity. Therefore, understanding the molecular mechanisms underlying the establishment and maintenance of cell polarity represents an important area in cancer research. Dr. Zhang and his team’s research may provide scientific grounds for the development of new therapeutic methods for many types of cancer.
Hepatocellular carcinoma (HCC), the most typical form of liver cancer, is the third leading cause of cancer-related fatalities in Asia. Prognosis of patients with the disease remains poor, with a 0.9 ratio of mortality to incidence.

Standard therapeutic options of surgery, liver transplantation, chemotherapy and radiotherapy provide only modest benefits for HCC patients. Only when the tumor is caught early and is small, can surgery extend life. However, this only occurs in 15% of patients. Molecularly-based therapeutics, such as those targeting blood vessels, have shown variable outcomes in treatment. Indeed, the 5-year survival for all stages of HCC is very low, at only 18%.

Small Aptamers: Targeting Epigenetic Changes May Halt Early Stage Liver Cancer

To identify innovative strategies that specifically target HCC and give patients hope that their lives may be saved, AFCR is supporting Dr. Daniel Tenen, a renowned epigenetic research pioneer from the National University of Singapore. Epigenetic changes—those changes not involving DNA mutations which alter activities and abilities of a cell—are emerging as an important contributor to the development of multiple cancers, including HCC. Importantly, abnormal epigenetic changes most likely occur at an early stage of tumor development, when treatments tend to be most effective, and are reversible.

To target epigenetic proteins in HCC, Dr. Tenen is developing aptamers—a new class of synthetic peptides (short proteins) and nucleic acids (DNA or RNA) selected for high-affinity binding to specific targets. Aptamers have low toxicity, since they target a specific protein, and they are not immunogenic, a feature that bodes well for the purpose of a less complex biological response. Dr. Tenen’s team is using the chemical and molecular biology strategy, SELEX, to isolate highly specific RNA aptamers that will target and inhibit specific epigenetic proteins in HCC.

Dr. Tenen and his colleagues, including those in Italy led by Dr. Vittorio de Franciscis, are developing aptamers to target two major epigenetic complexes which govern genetic landscapes in cancer cells: SALL4 and DNMT1. In an earlier landmark study, Dr. Tenen showed epigenetic protein SALL4 had strong expression in a subgroup of HCC patients in Hong Kong and Singapore, and that this correlated with poor prognosis. SALL4 has been shown to repress tumor suppressor gene p53, contributing to cancer development. Epigenetic protein DNTM1 is also overexpressed in HCC and contributes to its development and progression, and this also correlates with poor prognosis.

The candidate RNA aptamers are being synthesized and identified to bind with high affinity to specific areas in SALL4 and DNTM1 proteins in HCC cell lines. The laboratory demonstrations of the technique have yielded success in reversion of features of cancerous liver cells back to those of normal ones.

A Blueprint to Apply the Technology to Other Cancers

HCC patients are in need of therapeutic options which will prolong and improve their quality of their life. Dr. Tenen and his colleagues are applying their expertise in epigenetic modification and aptamer technology to develop a novel treatment platform for liver cancer. Furthermore, these efforts may provide a blueprint for the application of the technology to a wide variety of tumor types.
2018 saw considerable progress in the development of GBM AGILE, the brain cancer clinical trial initiative whose early-stage planning has long been supported by AFCR. Not only was an acting head hired to run the Global Coalition for Adaptive Research (GCAR), the non-profit organization which sponsors the study, but too its first candidate product was announced.

Gary Gordon, M.D., Ph.D., an accomplished pharmaceutical executive with extensive drug development experience, was in November named GCAR’s chief executive officer. Dr. Gordon most recently served as vice president of oncology development at AbbVie.

One week later, Bayer, the world’s ninth largest pharmaceutical company, announced that STIVARGA, the brand name of its regorafenib drug, would be the first to enter GBM AGILE. Already approved in such markets as China, Japan, the U.S. and EU for the treatment of colorectal and liver cancers, the molecule too holds promise as an improvement upon the current standard of care for glioblastoma.

By design, GBM AGILE is changing the IDEA of clinical trials.

- **Innovative** – The new “adaptive trial” will lower cost of development and speed progress.
- **Dynamic** – Perpetual learning system to quickly add potentially promising new drugs and drop those that appear to be ineffective.
- **Efficient** – Design and trial structure that will require fewer patients and a shorter time frame to get important answers about a drug’s effectiveness.
- **Accessible** – Global effort open to a broad patient population of newly diagnosed and recurrent GBM patients.

AFCR supports GBM AGILE, recognizing it as being among the most innovative and paradigm-shifting trial platforms in the world, and one that may provide huge impacts for brain cancer patients.

Significantly, the knowledge and the trial design platform established from GBM AGILE can be a model to be used for other rare and deadly cancers—giving patients hope for treatments that are best suited for their care.
Our Founder & CEO

Dr. Sujuan Ba, AFCR’s founder and CEO, was presented with the inaugural SNOChina Award for Outstanding Contributions of International Cooperation by Dr. Jiang Tao, chairman of the Society for Neuro-Oncology of the Chinese Medical Doctor Association. The presentation was made at the first annual SNOChina Conference, acknowledging such accomplishments as the creation of AFCR, the building of a high-quality cancer tissue biorepository in Asia and the championing of GBM AGILE.

Our Scientific Advisory Board Members

Two of the most recent Giants of Cancer Care honorees presented by OncLive are scientific advisory board members of AFCR: W.K. Alfred Yung, M.D., and the late Waun Ki Hong, M.D. (please see below). They join an exclusive club, comprised of only five dozen of the world’s cancer-battling elite.

Nurturing Future Talent

AFCR and the US Chinese Anti-Cancer Association jointly awarded six outstanding Chinese cancer researchers in the early stages of their careers with the ninth annual USCACA-AFCR Young Investigator Award. Scholars received a certificate for the Award and a cheque in the amount of U.S. $1,000 in a ceremony in Tianjin, being held during the Third International Convention on Cancer Translational Research.

Mourning the Loss of One of Our Own

The Asian Fund for Cancer Research remembers and recognizes the contributions of our esteemed former scientific advisory board member, Waun Ki Hong, M.D., who passed away on 2 January 2019, at the age of 76. Less than a year after having been named a Giant of Cancer Care, AFCR is particularly saddened by the death, too soon, of a brilliant cancer physician and scientist.
BRINGING INTERNATIONAL PARTNERS TOGETHER

Around the Pacific Rim

AFCR’s founder and CEO, Dr. Sujuan Ba, co-hosted the China Brain Cancer Mission Roundtable along with the leadership of Australia’s Eliminate Cancer Initiative and the China Pharmaceutical Innovation and Research Development Association on 13 April 2018 in Beijing. Among the participants was also University of Texas MD Anderson Cancer Center’s Dr. W.K. Alfred Yung, chairman of AFCR’s scientific advisory board.

European Collaboration

The German Cancer Research Center (DKFZ), the country’s leading cancer research institution, was introduced by AFCR’s founder and CEO, Dr. Sujuan Ba, to multiple world-class medical institutes in mainland China throughout Spring 2018. The initiative culminated in a trip by her and DKFZ’s leadership which included visits with key Chinese officials, companies and a half-dozen hospitals and cancer centers.

The Brightest Minds Gather in Hong Kong

AFCR was an official contributor to the 24 to 29 June 2018 Gordon Research Conference on Nasopharyngeal Carcinoma, a gathering at the Hong Kong University of Science and Technology of nearly 200 of the world’s top researchers into the disease—which is highly prevalent in Asia. The University of Hong Kong’s Dr. George Tsao, a member of AFCR’s scientific advisory board, was co-chair of the event, and AFCR-funded researchers were among the participants.

Highlighting Technologies at Major Chinese Conference

The 3rd Annual China BioMed Innovation and Investment Conference on 19 September 2018 featured a half-day session sponsored by AFCR. The International Innovative Oncology Companies Roadshow Showcase included remarks by Dr. Sujuan Ba, AFCR’s founder and CEO, and Dr. Michael Wang, a scientific advisory board member, as well as CEOs of seven U.S. and European oncology technology firms.
The Asian Fund for Cancer Research was proud to have been among the 50-plus organizations and companies to have participated in the Hong Kong Anti-Cancer Society’s Hong Kong Cancer Day activities, held 9 December 2018. A full slate of family-friendly programming was presented to nearly 3,000 participants, including food, entertainment, information sessions, exercise demonstrations, discussions and cancer screenings. Actress Sonija Kwok served as event ambassador, and among the special guests was Hong Kong Secretary of Food and Health Sophia Chan, Ph.D.

With liver cancer—but too neck, esophageal, breast and colorectal cancers—all shown to be associated with excessive alcohol intake, the Day’s theme, “Anti-cancer, say no to alcohol,” drove home an important message. In short, it is incumbent upon each adult individual to make wise and informed choices on their alcoholic consumption. At the very least, moderation should certainly serve as a basic guiding principle.
PUBLIC EDUCATION ON CANCER

AFCR actively communicates the latest breakthroughs in cancer research to the public, ensuring that communities throughout Asia have access to the most updated information on prevention, detection and treatment of all types of cancer.

E-News
AFCR’s free monthly e-newsletters help increase awareness of cancer prevention and early detection. Through this monthly communication, AFCR keeps our supporters and friends informed with the latest cancer research breakthroughs, healthy eating and lifestyle tips, local event opportunities and more cancer-related information updates.

“On Your Health” Series
AFCR publishes a series of “On Your Health” articles that provide cancer-fighting guidance to help people reduce their cancer risk through lifestyle and diet change.

Cancer Detection Guide
For most types of cancer, early detection is the key to survival. The Cancer Detection Guide compiled by AFCR helps educate individuals about the latest cancer screenings and diagnostic tests for various cancers that may help them detect cancer early.

Prevention Tips for Ovarian Cancer
Ovarian cancer is the most deadly cancer of the female reproductive system, which often goes undiagnosed until after the disease is far advanced. AFCR provides detailed information about risk factors, symptoms and prevention tips for ovarian cancer, aiming to raise more awareness in women of this “Silent Killer.”

Skin Cancer Prevention Tips
Studies have shown that much of the skin damage that leads to skin cancer is caused by overexposure to ultraviolet (UV) rays. AFCR offers practical skin cancer prevention guidelines to help keep people and their families skin cancer-free.

Risk Factors for Colorectal Cancer
Colorectal cancer is one of the leading cancer killers in the Asian population. It is also one of the most preventable cancers. The information AFCR provides is aimed to help the general public better understand the risk factors of the disease so that they can minimize the risk through adopting healthy lifestyles and taking regular colorectal cancer screening examinations.
Breast Cancer Examination

The earlier breast cancer is diagnosed, the better the chance of recovery. AFCR provides the latest guidance about periodic self-examination and screening that may help detect breast cancer early and save life.

Risk Factors for Lung Cancer

Lung cancer is another highly preventable cancer type that largely impacts the Asian population. AFCR provides the general public with risk factors for this disease and encourages people to live a healthy lifestyle, which is crucial for lung cancer prevention.

Warning Signs of Cancer

With knowledge of the proper warning signs, cancer may be detected early and its treatment more likely to be successful. We have put together warning signs of a variety of cancers, such as lung, breast, colorectal, prostate, uterine, ovarian, cervical, and skin cancer.

Cancer-Fighting Recipes

Food with cancer-fighting properties help reduce the risk of some forms of the disease. We have put together a wide variety of healthy recipes, from traditional to new and interesting ones, to help people add more healthy foods to their daily diet.

Cancer Awareness Colors

There are many forms of cancer and each presents its challenges. AFCR displays the well-known cancer ribbons which symbolize a variety of cancer types. However, we’re moving from an organ-focused approach (type of cancer) to a gene-focused approach (cancer genomics). This shift is already having a profound effect on the way cancer is treated, allowing doctors to provide more individualized options for patients (also known as precision medicine). AFCR’s goal is to increase public awareness of the understanding of cancer at the cellular and molecular levels—understanding the root causes of cancer and moving people towards cancer genomics.
BOARD OF DIRECTORS

Gary Gee Nung Wong, Chair
Partner, Hugill & Ip Solicitors

Perchow Joseph Chang, M.B.A.
Partner, Eight Roads Ventures China

Franck Le Deu
Senior Partner, McKinsey & Company Hong Kong

Albert Cheung-Hoi Yu, Ph.D.
Chairman & CEO, Hai Kang Life Corporation

ADVISORY BOARD

Wendy W.C. Lam, Chair
Managing Director, Arrow Capital Limited, Hong Kong

Jia-Lu Yin
Founder & Partner, Bright Minds Capital

SCIENTIFIC ADVISORY BOARD

Wai-Kwan Alfred Yung, M.D., Chair
Chairman, Department of Neuro-Oncology, University of Texas, MD Anderson Cancer Center

Mien-Chie Hung, Ph.D.
Vice President for Basic Research
Professor & Chair, Department of Molecular and Cellular Oncology, University of Texas, MD Anderson Cancer Center

Webster Cavenee, Ph.D.
Director of Strategic Alliances in Central Nervous Systems, Ludwig Institute for Cancer Research, Distinguished Professor, University of California, San Diego
Former Chairman, AFCR Scientific Advisory Board

Kanaga Sabapathy, Ph.D.
Head of the Division of Cellular & Molecular Research, Director of Planning & Strategy, The National Cancer Center of Singapore

Yung-Chi Cheng, Ph.D.
Henry Bronson Professor of Pharmacology, Yale University School of Medicine Chairman, Consortium for the Globalization of Chinese Medicine

George Tsao, Ph.D.
Professor, Faculty of Medicine, University of Hong Kong

Michael Wang, M.D., MBA, Ph.D.
Chief Strategy Officer, National Foundation for Cancer Research

5/F Dah Sing Life Building, 99-105 Des Voeux Road Central, Hong Kong
Tel: 2156 9684
Fax: 2156 9685